
.. .

*

NASA Contractor Report 181779

ICASE REPORT NO. 89-6

ICASE
A LANGUAGE COMPARISON FOR SCIENTIFIC

COMPUTING ON MIMD ARCHITECTURES

Mark T. Jones

Merrell L. Patrick

Robert G. Voigt

Contract NOS. NAS1-18107, NASI-18605
January 1989

_ _
(hAS1-CB-181779) B LAIfG08C-E CCL€AEISOLJ FCE N89-2 If37
SCXEBllPlC CCflPC'I lbC L E 8 X L I C I G C B I Z E C T O B E S
kina1 Report (I n r t i t c t e fcr L c s g u t e x
A k F l i c a t i c n s in Ecirnce a n c fr9iaeering) Unclaz
41 P CSCL O9B 63/61 0191959

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE ANTI ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

l.mgleyRes6archCantu
Hampton, Vrginia 23665

A Language Comparison for Scientific Computing On MIMD
Architectures

Mark T. Jones: Merrell L. Patrick' and Robert G. Voigtt

Abstract

Choleski's method for solving banded symmetric, positive definite systems is implemented
on a multiprocessor computer using three FORTRAN based parallel programming languages,
the Force, PISCES and Concurrent FORTRAN. The capabilities of the languages for expressing
parallelism and their user friendliness are discussed, including readability of the code, debug-
ging assistance offered, and expressiveness of the languages. The performance of the different
implementations is compared. It is argued that PISCES, using the Force for medium-grained
parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor
computer, Flex/32.

'Department of Computer Science, Duke University, Durham, NC 27706
+ICASE, NASA Langley Research Center, Hampton, VA 23665.

This research was supported by the National Aeronautics and Space Administration under NASA contract Nos.
NAS1-18107 and NAS1-18605 while the authors were in residence at ICASE. Additional support for the first two
authors was provided by NASA grant No. NAG-1-466.

1

1. Introduction

Efficient programming of parallel computers to support scientific applications is of increasing im-
portance. Although many programming environments are available on different machines, there
have been reIativeIy few comparisons of different programming paradigms on the same machine.
Several factors that contribute to the useability of a language have been identified. Using these
factors this paper explores the strong and weak points of three parallel languages by implementing
Choleski’s method for solving Ax = b, where A is a banded symmetric positive definite matrix,
on the Flexible Computer Corporation Flex/32 [Mat84]. The Flex/32 has twenty processors with
each processor having local memory and access to a shared memory. Appendix 9 illustrates the
overall architecture of the Flex/32. The architecture and three languages support both shared
memory and local memory implementations of the algorithm. In addition, one language supports
message passing. Thus, three programming paradigms can be considered: shared memory, message
passing, and shared/local which takes advantage of the local memory. These are discussed in the
next section. The three languages are all derivatives of FORTRAN and are discussed briefly in
section 3. The Choleski algorithm is given in Section 4 along with a brief discussion of the imple-
mentation tradeoffs. Section 5 presents observations on the implementation of the algorithm using
the various paradigms. The observations are based on factors such as expressibilty of functional
parallelism and data partitioning, support for communication and synchronization, runtime cost,
ease of program conversion, and user friendliness. The Appendices contain the code representing
the implementations.

2. Programming Paradigms

Three different parallel programming paradigms are considered: shared memory, message passing,
and share/local (henceforth referred to as local memory). Parallel architectures can also be placed
in these three classes. Each paradigm can be implemented on each architecture, but the cost of
implementing a paradigm on an architecture that doesn’t naturally support that paradigm can be
substantial.

For the purposes of this paper, a shared memory architecture is one in which each processor has
equal access to a shared or common memory (architectures where processors have cache memory
are placed in this category). In a hybrid architecture, each processor has a local memory and access
to memory shared by all the processors. Processors in a message passing architecture only have
access to local memory and must communicate via messages with other processors.

2.1 Shared Memory

When using the shared memory paradigm, the programmer can view the computer as a sequen-
tial computer with several concurrent processes running. Some of the programming issues that
arise are similar to those arising in concurrent programming on a sequential machine. Since all
processors are viewed as having equal access to all memory, the location of data is not important.
However, contention between processors for a particular location in the shared memory or for the
interconnection network between the processors and memory must be considered. The program-
mer is primarily concerned with dividing up the work among the processors to allow for maximum
parallelism while minimizing communication and providing synchronization among the processors.

2

Version A Version B

sum = sum + 1
LOCK (sumlock)
sum = sum + 1
UNLOCK(sumlock)

Figure 1: Shared memory programming bug

All communication and synchronization between processors takes place via shared memory.
One of the major burdens that the shared memory paradigm places on the programmer is the
necessity to synchronize references to objects that are used by more than one processor. Some
objects or sections of code require that they be accessed sequentially and the programmer must
ensure that this is the case while trying to keep all the processors doing useful work. This need for
synchronization is often the source of “parallel bugs” in shared memory programs (“parallel bugs”
are bugs that are introduced because the tasks of the program are being run simultaneously, not
traditional programming bugs). This type of bug also arises when running concurrent processes on
a sequential computer. Figure 1 shows an example of this type of bug. If several processors are
simultaneously executing Version A, more than one processor could fetch the same value for sum,
add one to it, and replace sum with the same value. In order to get the correct answer, the addition
to sum must be atomic. In version B, the addition to sum is made atomic by putting an exclusive
lock around it. This is an example of synchronization which the programmer must provide.

2.2 Message Passing

When programming in the message-passing paradigm, one of the programmer’s major concerns is
the distribution of data. Since one processor cannot access another processor’s memory, perfor-
mance is improved if the data a processor needs is allocated to its memory. Data exchange and
communication between processors is achieved via messages sent explicitly from one processor to
another. Thus the programmer is responsible for movement of data and the division of work among
processors. The movement of data is achieved by the explicit sending and receiving of messages
that contain the data to be moved. Synchronization is implicit in the message passing because a
processor does not send data until the data is ready and a processor does not receive data until it is
ready to receive it. Thus, the programmer doesn’t have to be concerned with the synchronization
problem of the shared memory paradigm, but is faced with the new problem of moving data from
processor to processor and partitioning this data efficiently across the processors. The programmer
must really view this paradigm as a group of isolated processes executing simultaneously that can
communicate only by messages, somewhat akin to the communicating sequential processes model
of Hoare [Hoa78]. Programs tend to be more difficult to write, but once written, do not have the
synchronization bugs that occur in shared memory programs. The code in Figure 1 in the message
passing paradigm might look like the code in Figure 2. In this code, each worktask sends the value
that is to be added to sum to sumtask which holds sum and is responsible for updating sum. Thus,
no explicit synchronization is necessary, just the sending of messages.

3

sumtask worktask

do 10 i=l ,P send (Val) to sumtask
receive(Val)
sum = sum + Val

10 continue

Figure 2: Equivalent message passing code for sum problem

2.3 Shared/Local

Programming in the local paradigm is very similar to programming in the shared memory paradigm,
with the exception that in order to obtain peak performance, locality of data must be considered.
A hybrid architecture can be programmed as a shared memory architecture, but performance may
not be optimal because the use of local memory may not be optimal (local references are faster than
shared memory references and there is less possibility of contention). The shared/local paradigm
lets the programmer make use of this memory hierarchy by allowing the programmer to specify
where memory is allocated. After the allocation is done, the program looks the same as a shared
memory program. The programmer may also want to make local copies of shared data that a
processor accesses many times in order to make fewer shared memory references. The bugs for the
shared/local paradigm seem to be the same as for the shared memory paradigm and aside from
memory allocation, the code tends to look the same.

3. Languages and Their Use

Languages compared in this study are restricted to FORTRAN based languages that have been
implemented on the Flex/32.

3.1 The Force

The Force is a parallel language for shared memory multiprocessors [Jor87]. It consists of extensions
to FORTRAN that include constructs for both medium and coarse grained parallelism. A Force
is a set of simultaneously initiated processes which run concurrently on different processors. Force
members communicate through shared variables and synchronize through barriers and critical re-
gions. Loop iterations are partitioned among Force members by prescheduling or self-scheduling.
The Force is currently implemented as a preprocessor to the Concurrent FORTRAN preprocessor.

3.2 Concurrent FORTRAN

Concurrent FORTRAN [Cor861 is a parallel language for the Flex/32 computer implemented by
Flexible Computer Corporation. The language assumes a shared memory model of computation
with some limited message-passing capabilities for synchronization. The user is responsible for

4

explicit process management. Concurrent FORTRAN is implemented as a preprocessor to the
FORTRAN compiler.

3.3 PISCES

PISCES is a parallel language and environment for scientific computation [Pra87]. It can s u p
port both message-passing based programming and shared memory programming, or a mix of the
two. For the purposes of this comparison, the two aspects of PISCES are treated as two separate
languages. PISCES is currently implemented as a preprocessor to the FORTRAN compiler and
includes a menu-driven environment for configuration of the machine, running the program, and
obtaining debugging information. The message-passing portion of PISCES provides facilities for
explicit generation of processes and for process identification. It also provides message sending con-
structs and “handlers” that accept and process messages. The shared memory portion of PISCES
is actually the Force language with some minor syntactic differences. All the constructs, including
shared variables, of the Force can be used within a PISCES process.

3.4 Using the Languages

Each processor of the Flex 32 Multiprocessor Computer has its own local memory as well as access
to a shared memory. This classifies it as a hybrid of distributed and shared memory architectures.
Given this hybrid nature and implementations of the three languages which support it, algorithms
can have strictly shared memory implementations or local memory implementations which use
shared memory for communication amongst processors. In addition, one language, PISCES, s u p
ports strictly message passing implementations of the algorithms. Therefore, in our study a total of
seven different implementations of Choleski’s method were possible on the Flex/32. This makes it
a particularly interesting architecture on which to compare the various paradigms for programming
parallel computers. In the following sections the terms shared memory, local memory and message
passing will be used to distinguish between the different implementations.

4. Choleski’s Method and its Parallel Implementation

The solution of
A x = b

where A is symmetric positive definite and banded with semi-bandwidth /3 is carried out in three
phases:

1) Factor A into LLT,
2) forward solve Ly = b for y, and
3) backward solve LTx = y for z.

There are different ways of organizing each of these phases of computation as described by
Dongarra, et al. [DGK84]. For the factorization phase, the “kji” form used by Cleary, et al.
[CH086] has been chosen, namely:

5

for k = 1 to N
Ikk=akk 112

for s = k + 1 to min(k + p, N)

f o r i = k + I t o m i n (k + p , N)
Iak=aak/Ikk

for i = j to min(k + p, N)
a;j=a;j-l;kljk

k j i Choleski Factorization

This form of Choleski factorization is column oriented, so columns are used to define the granu-
larity of parallelism. Hence, individual processors are assigned sets of columns which they operate
upon one at a time. The column wrapped assignment is chosen, which means processor i is assigned
columns i, i + p, i + 2p, ..., assuming, of course, there are p processors. In the shared memory
versions, each processor operates on its columns which are all stored in shared memory, whereas
in the local memory versions a processor’s columns are copied to its local memory and operated
upon there. In the latter case, data shared by all the processors, e.g., a pivot column, are written
to shared memory and accessed there.

For the forward and backward solve phases the inner product (i j) algorithm [R088] and the
column sweep algorithm [GH86] are considered. These are given below.

for i = 1 to n
for j = max(i - p, 1) to i - 1

y; = bi / lii

bi = bi - 1;jyj

The Inner Product (i j) Algorithm for Ly = b

for j = n to 1
xj = yj / ljj
for i = j - 1 to max(j - p, 1)

y; = yi - 1;jxj

Column Sweep (ji) Algorithm for LTx = y

For the shared memory versions of the forward and backward substitutions, the column sweep
algorithm is used in both cases. The inner product algorithm could have been equally as effective.
After the factorization phase in the local versions, the columns of L are stored in the local memories
in wrapped column form. In this case, the inner product (ij) algorithm for Ly = b and the column
sweep (ji) algorithm for LTx = y yielded the more efficient implementation. Note that here the
hybrid nature of the architecture affected the choice of algorithm used. To optimize use of local
memory, the matrix is stored by columns. To take advantage of this storage, the inner product

6

algorithm followed by the column sweep algorithm must be used, rather than using the column
sweep algorithm in the both cases as we did for the shared memory version.

5. Comparisons

In the process of carrying out this study several factors contributing to the useability of a language
were identified. These include expressibilty of functional parallelism and data partitioning, support
for communication and synchronization, ease of learning the language, ease of converting existing
programs, readibilty of the code, debugging and syntax checking, and user friendliness.

As noted above seven different implementations of Choleski’s method using the three languages
on the Flex/32 are possible. We examine only six of those implementations in carrying out our
comparisons below. The six are shared and local memory Force, shared and local memory ConCur-
rent FORTRAN, strictly message passing PISCES, and PISCES with Force. Programs for each of
these implementations are included in the appendices. Note that the PISCES with Force program
is just shared memory Force enclosed in a PISCES task definition statement.

5.1

First the expression of functional and data parallelism is examined. In line 1 of the Force program
in Appendix 1, a Force macro declares the start of a parallel main program, named Choleski, which
will be executed by N P processes each of which will be identified by a unique identifier M E . The
number of processes executing the program is a parameter specified by the user at runtime. A
“driver” routine creates these processes, assigns values to N P and M E and returns control to the
user main program. All processes begin executing from this point on, until they are terminated by
the Join statement in line 141. Segments of program which are to be executed by only one process
are enclosed in a Barrier - End Barrier pair, e.g., the program segment which puts the pivot column
into shared memory for everyone to access (lines 70 - 74). Without barriers each process would
execute the main program (the function, in this case) in parallel.

Another example of functional parallelism is illustrated by the parallel Presched DO loop in
lines 38-40 of the shared memory version of the Force in Appendix 2. Since the statements within
the loop indexed by S do not depend on each other, they can be executed in parallel for different
values of S. Pre-scheduling partitions different values of S evenly over processes at compile time.
The function being executed in parallel is the computation of the pivot column.

In Concurrent FORTRAN, the Process statement defines a process to the executing environ-
ment and if the statement is within a COBEGIN or COBLOCK statement, it also starts execution
of the process. For example, in lines 71-75 of Appendix 3, N P processes are defined where NP
is the number of processors being used. Since the process statements are in a COBLOCK state-
ment, each process will begin execution of the Choleski factorization subroutine ELCOL() at the
end of the COBLOCK statement. Process with tag PID(1) will be executed by processor number
PROCNUM(1) and will operate upon the set of columns assigned to it’s local memory by the
processes executed in the COBLOCK statements 62-66. This set of statements accomplishes the
data partitioning needed for parallel execution of the Choleski factorization given in lines 152-187
(the main body of the subroutine ELCOL).

Every PISCES program is structured as a set of one or more tasks that carry out the compu-
tational work. The first statement in the PISCES program of Appendix 5 defines the main task,

Expression of Functional Parallelism and Data Partitioning

7

chol. Within this parent task other tasks are initiated which will work in parallel to carry out the
Choleski factorization, the forward solve and backward solve. These tasks are initiated in statement
193 with statements defining the Choleski factorization phase of the tasks given in lines 263-301.
Sets of data required by the tasks are sent to them a t task initiation time much as data is passed
to a FORTRAN subroutine when it is called. Subtask initiation and the passing of data to them
are illustrated in lines 82-92 of Appendix 5.

The Force constructs provide the user with the ability to do medium grain, looplevel parallelism
(using the parallel do loops) as well as coarser grain parallelism by simply calling subroutines
within the parallel do loops. These levels of parallelism are supported efficiently by starting up
processes on each processor at the beginning of the program and using constructs like the Barrier
statement to provide synchronization. With PISCES and Concurrent FORTRAN, the user is
responsible for starting up the processes and is limited to a coarser grain granularity unless he
provides the synchronization constructs. The implementation of Choleski factorization required
looplevel parallelism. This required a high ratio of messages to computation in the case of PISCES
and the use of the WHEN and CFlock statements in Concurrent FORTRAN to construct the
equivalent of a barrier.

5.2 Communication

Here language features and constructs which support the communication of intermediate data
between tasks or processes executing in parallel are compared.

Within the Force program of Appendix 1 and the Concurrent FORTRAN program of Appendix
3, communication between processes i s accomplished by a process assigning the values to be com-
municated into shared variables in shared memory from which they can be read by other processes
which need them. This is illustrated, e.g., within the Choleski factorization loop, given by lines
55-85 in Appendix 1 and lines 152-185 in Appendix 3, where the process owning the current pivot
column will modify it and then write it from it’s private local memory to a shared variable in shared
memory. This action is carried out by a simple assignment statement. The Force shared memory
program required no communication between the tasks.

In PISCES programs, the communication of intermediate data between executing tasks is more
explicit. This is accomplished with ”send” statements and “accept” statements which use “han-
dlers” to accept the data being sent. The use of these constructs is illustrated in the Choleski
factorization tasks, lines 251-289 of Appendix 5. If a task owns the current pivot column it updates
it and uses the “to all send” statement to send it to all other tasks. The send statement also
specifies the name of a “handler” pivot in this case, which accepts the data. Statements 268-276
deal with the acceptance of the pivot column while statements 373-385 define the “handler” task.

The setup time for communication (and programming time) required by PISCES is much larger
than that of the local memory versions of Force and Concurrent FORTRAN. In Force and ConCur-
rent FORTRAN, it is a simple matter of using an assignment statement to assign data to a variable
in shared memory and then the other processors can read this data. In PISCES, the programmer
must use a send statement to send the message to the tasks that need the data, and those tasks
must then execute a “handler” which is in effect a subroutine.

8

5.3 Synchronization

Next, the constructs available in the different languages for managing synchronization of processes
and tasks are examined. Two types of synchronization are used within the Force program of
Appendix 1, the barrier and critical statements. The use of the barrier statement is illustrated
in the Choleski factorization loop. Statements 70 and 74 are a “Barrier” - “end Barrier” pair.
This causes all processes to wait before proceeding until the process which computes the current
pivot column has written it to shared memory. The use of the critical section is illustrated in lines
100-102 of Appendix 1.

In the Concurrent FORTRAN program of Appendix 3, the WHEN statement and CFlock
statements are used to accomplish synchronization. The WHEN statement appears in line 162 and
prevents the process which owns the current pivot column from updating it and writing it to shared
memory until all other processes have finished using the old pivot column. The WHEN statement
in line 170 prevents the processes that need the current pivot column from continuing until it is
available in shared memory. The CFlock-CFulck statement in lines 182-184 assures that only one
process a t a time will update the shared memory variable, NUMDONE.

In the PISCES program of Appendix 5, “send” and “accept” statements are used to synchronize
the execution of tasks. For example, in the Choleski factorization, a task cannot update it’s set of
columns until it has accepted the pivot column (lines 268-270) from the task which owns, updates
and sends it (lines 254-260). A check is made by each task to see that the pivots it requires are
being received in proper order. If not, the task resends them to itself until they are received in the
proper order (lines 273-275).

When using PISCES message passing, synchronization is taken care of by the communication
of data; the programmer is not responsible for it. However, in the Concurrent FORTRAN and
Force programs this is one of the programmer’s main responsibilities. The Force synchronization
constructs are easier to use than those in Concurrent FORTRAN, but they are not as flexible. The
Barrier statement is very useful, however it requires that all processors reach a Barrier. The pro-
grammer cannot specify that one task execute some code while the other tasks execute some other
code that contains a Barrier. When the programmer needs the equivalent of a barrier statement in
Concurrent FORTRAN he must construct it himself.

5.4 Runtime Cost

Comparisons of the runtimes of the various programs were obtained by running the programs on
several different data sets. Appendix 7 shows the results of this comparison on a data set generated
from a structural analysis application at NASA Langley Research Center. Negative speedups
occur in some of the forward and back solve cases due to the large ratio of synchronization to
computation in these algorithms. From these comparisons, it is clear that Concurrent FORTRAN
becomes increasingly costly as more processors are added. The Force versions are faster, with the
shared and local memory versions being competitive with each other. The difference in execution
times of the Force programs and strictly message passing PISCES programs is due in part to the
overhead inherent in message passing and in part to its implementation on an architecture which
does not support message passing. Runtimes of Force and PISCES with Force programs are nearly
identical. The high cost of Concurrent FORTRAN is due to the costly implementation of WHEN
on the Flex/32 compared to the efficient lock routines used in Force.

9

5.5 Conversion of Existing Programs

If the parallelism in an existing FORTRAN program exists in DO-loops then it is a fairly sim-
ple matter to convert FORTRAN into the Force by using pre-scheduled or self scheduled loops.
Synchronization is accomplished by barrier statements and critical sections which are easy to use.
In both PISCES and Concurrent FORTRAN, a conversion of existing programs involves more
restructuring of the code with PISCES requiring considerably more than Concurrent FORTRAN.
One measure of coding efficiency is the number of lines of code. By this measure, as seen in A p
pendix 8, the Force is clearly the language of choice of the three languages examined for conversion
of existing FORTRAN code.

5.6

By design, the Force is like FORTRAN with a small number of constructs added. The use of
these constructs is reasonably intuitive. Hence, programmers who know FORTRAN can easily
learn and read the Force. This can be observed by looking at the Force program of Appendix 2.
Although FORTRAN based, PISCES is harder to learn. First, the language is based on the idea
of communicating tasks which is a programming paradigm quite different from that of standard
languages. Because of this, the new constructs are more complex and hence more difficult to learn.
They are, however, much more versatile than those in the Force and Concurrent FORTRAN. A
comparison of the Force program in Appendix 1 with the PISCES program of Appendix 5 clearly
indicates different complexities of the two languages. The constructs added to FORTRAN to
produce Concurrent FORTRAN are not much more complex than those those added to the Force.

The readability of a program written in some language is, of course, related to the ease with
which that language can be learned. I t is not surprising then, given knowledge of FORTRAN, that
a Force program is relatively easy to read. Force constructs are simple and almost self-explanatory.
However, the lack of explicit process management can create difficulty in understanding the flow
of program control in a Force program. For example, in the factorization portion of the Force
program in Appendix 1 (lines 55-85), every processor is executing the same code and it is difficult
to follow the flow of control.

Once one understands how processes are initiated and the meaning of “when” and “lock/unlock”
statements, Concurrent FORTRAN is quite readable. As PISCES is more difficult to learn,
PISCES programs are more difficult to read. PISCES parallel constructs are quite complex, e.g.,
the message handlers of PISCES tend to hide some of the work being done in a task. This is illus-
trated by examining statements 257-259 of the PISCES program of Appendix 5 where the “accept”
statement names a “handler” incol. One must locate the code for the “handler” incol, lines 370-382,
which is not very self-explanatory.

A reasonable measure of difficulty of reading (and time taken to write) languages is comparing
the number of lines of code for the same implementation in different languages. This would not
always be a good measure of readability if we were comparing very different languages such as APL
and FORTRAN, however, since the languages being discussed are all extensions to FORTRAN,
it appears to be reasonable. Appendix 8 shows the comparison based on the lines of code. It is
clear the Force is the least verbose of the languages and that local versions take more lines of code
than shared versions. This is illustrated by comparing the Force local memory and shared memory
versions of the programs in Appendix 1 and Appendix 2, respectively. First, one observes that the
number and type of declaration statements increases. In the local memory version, additional lines

Readability and Learning of the Languages

10

of code (44-53) are needed to distribute data to the local memories. Also extra code is needed in
each of the factoring, forward solve and backward solve phases of solution, e.g., in the factoring
phase of the local memory version a test is made (statement 60) to see which processor owns the
pivot column; it then computes it and places it in shared memory.

5.7 Debugging and Syntax Checking

All three languages suffer from the problem that they are preprocessors, so the FORTRAN syntax
errors that are detected by the FORTRAN compiler have line numbers that do not match the
line numbers of the original source file. The programmer must therefore look at the output of
the preprocessor t o find his syntax errors. The Force preprocessor gives no information on syntax
errors that involve Force constructs, it simply passes them on to the compiler. It also provides
no runtime debugging support. PISCES will detect many of the syntax errors involving PISCES
constructs and give the correct line numbers of the errors in the source file. PISCES also provides
very good runtime debugging support, with the capability to trace all messages, process starts,
etc. Concurrent FORTRAN will detect many syntax errors involving Concurrent constructs and
will give the correct line numbers of the errors in the source file. However, it provides no runtime
debugging support.

5.8 User Friendliness

To help the user, the Force provides a routine called Forcerun that will allow the user t o specify
the name of a program to run and the number of processes to be used in running it. This program
therefore masks any of the hardware details from the user and is the same for every machine on
which the Force is implemented. PISCES is more “user friendly”; it allows the user to interactively
configure the machine, set trace options, and run the program. During the run it interactively
allows the user t o examine such things as message queues and memory being used. Concurrent
FORTRAN, on the other hand has none of the user friendly features of the other two.

6. Conclusions

The above discussion focused on comparing the Force, Concurrent FORTRAN and PISCES as
parallel programming languages. As indicated in the Appendices, the local and shared memory
versions of the Force programs are very similar; there is a small difference in the performance of the
two codes due to architectural characteristics of the Flex/32. It should be added that PISCES has
incorporated all the features of the Force within it’s environment. Hence one is able to use the best
features of both PISCES and the Force when writing programs using PISCES. Of course, resulting
programs can look like nearly pure PISCES programs, nearly pure Force programs or anywhere
between. The PISCES Force program is nearly the same as the Force program but is enclosed in a
PISCES task which provides the richness of the PISCES environment for debugging and testing the
program. Performance results given in Appendix 7 indicate that PISCES Force performs equally
as well as the Force program. We therefore conclude that the best implementation of Choleski’s
method on the Flex/32 is one which uses PISCES with Force constructs.

Clearly much progress in needed in the area of parallel languages for scientific computing.
One approach is to construct a FORTRAN-based language that allows the easy expression of
the parallelism inherent in an algorithm and provides a reasonable amount of portability across

11

architectures. A difficulty in this area is that many of the parallel architectures are very different
from each other. There is a question of just how much portability can be achieved without an
unreasonable loss in efficiency.

7. Acknowledgements

The authors thank Harry Jordan and Terry Pratt for many helpful conversations during the writing
of this paper.

References

[CHO86] Andrew J. Cleary, David L. Harrar 11, and James M. Ortega. Gaussian elimination and
Choleski factorization on the FLEX/32. Technical Report Applied Mathematics Report
No. RM-86-13, University of Virginia, December 1986.

[Cor861 Flexible Computer Corporation. ConCurrent FORTRA N(TM) Reference Manual, 1986.

[DGK84] J.J. Dongarra, F.G. Gustavson, and A. Karp. Implementing linear algebra algorithms

[GH86]

[Hoa78]

[Jor87]

[Mat841

[Pra87]

[R088]

for dense matrices on a vector pipeline machine. SIAM Review, 26(1):91-112, January
1984.

A. Geist and M. Heath. Matrix factorization on a hypercube multiprocessor. In M. Heath,
editor, Hypercube Multiprocessors, pages 161-180. SIAM, Philadelphia, 1986.

C.A.R. Hoare. Communicating sequential processes. Communications of the A CM,
21(8):66&677, 1978.

Harry F. Jordan. The force. In Jameson, Gannon, and Douglas, editors, Characteristics
of Parallel Algorithms, chapter 16. MIT Press, 1987.

N. Matelin. The FLEX/32 multicomputing environment. In R.J. Hayduk and A.K. Noor,
editors, Research on Structures and Dynamics. NASA, 1984. NASA CP-2335.

Terrence W. Pratt . PISCES 2 user’s manual. Icase interim report 2, ICASE, NASA
Langley Research Center, 1987.

C, Romine and J. Ortega. Parallel solution of triangular systems of equations. Parallel
Computing, 6:109-114, 1988.

12

Appendix 1: Force - local memory version

1
2
3 c
4
5
6
7
8 C
9
10 c
11
12 c
13
14 c
15
16 C
17
18 C
19
20 c
21
22
23 C
24
25 C
26
27 C
28
29
30
31
32 C
33
34
35
36
37
38
39
40 600
41 525
42
43 c
44
45
46
47
48 710
49
50
51 700
52
53

Force Choleski of NP ident ME
Shared INTEGER Beta,BetaP,N
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size

Private INTEGER I,J.K,S
Private INTEGER tempmin
Private INTEGER tempmax
Shared REAL TempA(100000)
TempA is temporary holding for the matrix

Private REAL A(100000)
A contains the malrix

Private INTEGER Assign(2000)
Assign is the array of column numbers this processor owns

Private INTEGER NumCols
NumCols is the number of columns owned

Shared REAL CurL(2000)
The current pivot column

Shared REAL tempCurL(2000)
The temporary var holding the next pivot column

Shared REAL RHS(2000)
RHS is the right-hand side vector

Private REAL PriSUM
Shared LOGICAL UPDTRH
UPDTRH is used for a critical section

Shared REAL Y(2000)
The Y vector in the forward solve

Shared REAL X(2000)
X is the solution vector

Private INTEGER LCol, L2Col
End declarations

Barrier
Decide whether to read in or build the matrix

READ(9,52!5) I
IF (I.eq.0) THEN

CALL INITMAT(TempA,RHS,N,Beta,BctaP)

CALL CRMAT(TempA,RHS,N,Beta,BeW)
ELSE

END IF
WRITE(6,600) N, Beta
FORMAT(' Order',I4,' matrix with a semi-bandwidth',14,'.')
FOR MAT(14)

End Barricr
Transfer the matrix from Shared memory to local memory

LCol = 1
Preschcd DO 700 I = 1, N

DO 710 J = 1, BetaP
A((LCol*BetaP)+J) = TempA((I*BetaP)+J)

Con tin uc
Assign(LCo1) = I
LCol = LCol + 1

End Preschcd DO
NumCols = LCol - 1

13

54 C
55 LCOl = 1
56 DO100K=l .N

Start the choleski factorization loop

57
58 C
59 c
60

~ 61
62
63
64
65 C

67 110
68
69
70
71

I 72
73 115
74

76
77
78
79
80
81 C
82 130
83
84 120
85 100
86
87 C
88
89
90
91
92 C
93
94
95

I 96
97
98 310
99 c
100
101

I

~ 7 5 c

I 102
I 103

104
I 105

106
107
108

tempmin = min(K+Beta,N)
if this processor owns the pivot column then compute it and
place it in shared memory

IF (Assign(LCol).eq.K) THEN
A((LCol*BetaP)+l) = sqrt(A((LCol*BetaP)+l))
tempCurL(1) = A((LCol*BetaP)+l)
DO 110 S = K + 1, tempmin

A((LCol*BetaP)+S-K+1) = A((LCol*BetaP)+S-K+1) /

tempCurL(S-K+1) = A((LCol*BetaP)+S-K+ 1)
A((LCol*BetaP)+l)

Continue
LCOl = LCOl + 1

END IF
Barrier

DO 115 S = K, tempmin
CurL(S-K+l) = tempCurL(S-K+1)

Continue
End Barrier
Update the rest of the columns

DO 120 L2Col= 1, NumCols
J = Assign(L2Col)
IF ((J.ge.K+l).and.(J.le.tempmin)) THEN

Do 130 I = J, tempmin
A((L2Col*BetaP)+I-J+1) = A((L2Col*BetaP)+I-J+1)

- CurL(1-K+ l)*CurL(J-K+1)
CONTINUE

END IF

CONTINUE
CONTINUE

Forward Solve (using inner product)
LCOl = 1
D O 3 0 0 I = l , N

tempmax = max(1-Beta,l)
PriSUM = 0
Compute the amount this processor will subtract from the RHS

DO 310 L2Col= 1, NumCols
J = Assign(L2Col)
IF ((J.ge.tempmax).and.(J.le.I-1)) THEN

END IF
PriSUM = F'riSUM + A((BetaP*L2Col)+I-J+ l)*Y(J)

CONTINUE
Update the RHS
Critical UPDTRH

RHS(1) = RHS(1) - PriSUM
End Critical
IF (I.eq.Assign(LCo1)) THEN

CurDiv = A((BetaP*LCol)+l)
LCOl = LCOl + 1

END IF
Barrier

Y(1) = RHS(1) / CurDiv

14

109
110 300
111
112 c
113
114
115 C
116
117
118
119
120
121
122
123
124 C
125
126
127
128
1 29
130 410
131 400
132
133 C
134
135
136
137 500
138 680
139
140
141
142

End Barrier
CONTINUE

Backward Solve (using col-sweep)
LCol = NumCols
DO 400 J = N, 1, -1

If we own column J, then compute the new X
IF (J.eq.Assign(LCo1)) THEN

X(J) = Y(J) / A((BetaP*LCol)+l)
LCol = LCol - 1
IF (LCol.eq.0) LCol = 1

END IF
Barrier
End Barrier
tempmax = max(J-Beta.1)
Everyone update Y

DO 4 10 L2Col = NumCols, 1. - 1
I = Assign(L2Col)
IF ((I.1e.J-l).and.(I.ge.tempmax)) THEN

END IF

CONTINUE

Y(I) = Y(1) - A((BetaP*L2Col)+J-I+l)*X(J)

CONTINUE

Print the solution vector
Barrier
D O 5 0 0 J = l , N

WRITE(8,680) J, X(J)
CONTINUE
FORMAT(’ X(’T14,T) = ’,6E13.6)

End Barrier

Join
END

Appendix 2: Force - shared memory version

1
2
3 c
4
5
6
7
8 C
9
10 c
11
12 c
13
14 C
15
16
17

Force Choleski of Np ident ME
Shared INTEGER Beta,BetaP,N
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size

Private INTEGER IJ,K,S
Private INTEGER tempmin
Private INTEGER tempmax
Shared REAL A(100000)
A contains the matrix

Shared REAL RHS(2000)
RHS is the right-hand side vector

Shared REAL Y(2000)
The Y vector in the forward solve

Shared REAL X(2000)
X is the solution vector

End declarations

Barrier

18 C
19
20
21
22
23
24
25
26 600
27 525
28
29
30 C
31
32 C
33
34
35
36
37 c
38
39
40 110
41
42
43 c
44
45
46
47
48

Decide whether to read in or build the matrix
READ(9.525) I
IF (I.e.q.0) THEN

ELSE

END IF
WRITE(6,600) N, Beta

CALL INITMAT(A,RHS ,N,Beta,BetaP)

CALL CRMAT(A,RHS,N,Beta,BetaP)

FORMAT(’ Order’,I4,’ matrix with a semi-bandwidth’,I4,’.’)
FORMAT(I4)

End Barrier

Start the choleski factorization loop
DO100K=l ,N

Compute the first element of the pivot column
Barrier

End Barrier
tempmin = min(K+Beta,N)
Compute the rest of the pivot column

Presched DO 110 S = K+1, tempmin

A((K*BetaP)+ 1) = sqrt(A((K*BetaP)+l))

A((K*BetaP)+S-K+1) = A((K*BeW)+S-K+1) / A((K*BeW)+l)
End Presched DO

Barrier
End Barrier
Update the rest of the columns

Presched DO 120 J = K+1, tempmin
Do 130 I = J, tempmin

A((J*BetaP)+I-J+ 1) = A((J*BetaP)+I-J+1)
C - A((K*BeW)+I-K+l)*A((K*BetaP)+J-K+1)

130 CONTINUE
49 120 EndPresched DO
50 100 CONTINUE
51
52 C
53 D O 3 0 0 J = l , N
54 Barrier
55
56 End Barrier
57 tempmin = min(J+Beta,N)
58
59
60 310 End Presched DO
61 300 CONTINUE
62
63
64 C The backward solve (using col-sweep)

66 Barrier
67
68 End Barrier
69 tempmax = max(J-Beta,l)
70
71
72 410 EndPreschedDO

The foward solve (using col-sweep)

Y(J) = RHS(J) / A((BetaP*J)+l)

Presched DO 310 I = J+1, tempmin
RHS(1) = RHS(1) - A((BeW*J)+I-J+l)*Y(J)

65 DO 400 J = N, 1, -1

X(J) = Y(J) / A((BetaP*J)+l)

Presched DO 410 I = J-1, tempmax, -1
Y(I) = Y(1) - A((BetaP*I)+J-I+l)*X(J)

16

I 73 400
74
75 c
76
77
78
79 500

1 80 680
81
82

1 83
84

I

I

CONTINUE

Print out the solution vector
Barrier
DO 500 J = 1, N

WRITE(8,680) J, X(J)
CONTINUE
FORMAT(* X(’,14,’) = ’,6E13.6)

End Barrier

Join
END

Appendix 3: Concurrent FORTRAN - local memory version

1
2
3 c
4 c
5
6 C
7
8
9 c
10
11
12
13 C
14
15
16 C
17
18
19 c
20
21
22 c
23
24 C
25
26 C
27

29
30

I 31
32
33
34
35
36
37
38
39 c

I 28 C

PROGRAM MAIN
Shared INTEGER /labell/ PRCNUM(20)
PRCNUM holds the physical proc number corresponding the
the logical proc number

Shared INTEGER /labela NP
NP is the number of processors

Shared INTEGER /label3/ NUMDONE
Shared INTEGER /label4/ Beta,BetaP,N
Beta is the semi-bandwidth, Be@ is Beta+l, N is the matrix size
Shared INTEGER /label5/ PIVCOL
Shared REAL /label6/ TempA(30000)
REAL A(30000)
A contains the matrix

common /pblkl/ A(30000)
INTEGER ASSIGN(S00)
Assign contains the list of columns that each processor owns

common /pblk2/ ASSIGN(500)
INTEGER NUMCOLS
numcols is the number of columns that a processor owns

common /pblk3/ NUMCOLS
Shared REAL /labelly CurL(2000)
the current pivot column

Shared REAL /label7/ RHS(2000)
RHS is the right-hand side vecto

Shared REAL /label8/ Y(2000)
The Y vector in the forward solve

Shared REAL /label9/ X(2000)
X is the solution vector

Shared CHARACTER /labell 1/ NUMLCK
EXTERNAL LOADC
EXTERNAL ELCOL
EXTERNAL FORW
EXTERNAL BACK
INTEGER PID(20)
INTEGER I
INTEGER ICFret
INTEGER tempmax, tempmin

Allocate a lock

17

40
41
42 C
43
44
45
46
47 15
48
49 c
50
51
52
53
54
55
56
57 600
58 525
59
6 o c
61
62
63
64
65 155
66
67
68
69 C
70
71
72
73
74 150
75
76
77
78 C
79
80
81
82
83 160
84
85
86
87 C
88
89
90
91
92 170
93
94

CALL CFgetl(ICFret,”UMLCK’)
open(unit=2,cpu= 1 ,file=’/usr/u l/mtj/concur/choleski/param.dat’)
Read in the number of processors

READ(2.525) NP
PRINT *, * Using ’,NP,’ processors’
DO 15 I = 1, NP

PRCNUM(1) = I + 2
CONTINUE

Decide whether to read in or build the matrix
READ(2,525) I
IF (I.eq.0) THEN

ELSE

END IF
WRITJZ(6,600) N, Beta

CALL INITMAT(TempA,RHS,N,Beta,BetaP)

CALL CRMAT(TempA,RHS,N,Beta.BetaP)

FORMAT(’ Order’,I4,’ matrix with a semi-bandwidth’,I4,’.’)
FORMAT(I4)

Load up the private copies of TempA
PRINT *, ’ Making private copies’
COBLOCK
DO 155 I = 1. NP

PROCESS (PID(i),LOADC(),PRCNUM(I))
CONTINUE

END COBLOCK

PIVCOL = 0
Start the factorization processes on each processor

NuMDoNE=NP
COBLOCK
DO 150 I = 1, NP

PROCESS (PID(i),ELCOL(),PRCNUM(I))
CONTINUE

END COBLOCK

PIVCOL = 0
Start the forward solve processes on each processor

NuMDoNE=O
COBLOCK

DO16oI= l ,NP
PROCESS (F‘ID(i) FORWO ,PRCNuM(I))

CONTINUE
END COBLOCK

PIVCOL = N + 1
Start the back solve processes on each processor

NuMDoNE=NP
COBLOCK

DO 170 I = 1, NP
PROCESS (PID(i) ,B ACKO ,PRCNUM(I))

CONTINUE
END COBLOCK

18

95 c
96
97
98 500
99 680
100
101
102
103
104 c
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
1 24
125
126 20
127 10
128
129
130
13 1
132 C
133
134
135
136
137
138
139
140
14 1
142
143
144
145
146
147
148
149

print the solution vector
DO 500 J = 1, N

WRITE(8,680) J, X(J)
CONTINUE
FORMAT(' X('J4,') = ',6E13.6)

CALL CFkill(ICFret.0)
END

private copies task
SUBROUTINE LOADCO
Shared REAL /label6/ TempA(30000)
REAL A(30000)
common /pblkl/ A(30000)
INTEGER ASSIGN(5OO)
common /pblk2/ ASSIGN(5OO)
INTEGER NUMCOLS
common /pblk3/ NUMCOLS
INTEGER plself
INTEGER MYNUM
INTEGER I, J
Shared INTEGER /label2/ NP
Shared INTEGER /label4/ Beta,BeW,N

MYNUM = pl.df0
NUMCOLS = 0
Do 10 I = MYNUM,N, NP

NUMCOLS = NUMCOLS + 1
ASSIGN(NUMC0LS) = I
D o 2 0 J = 1,BetaP

CONTINUE
A((NUMCOLS * BetaP)+J) = Temp A((I* B etaP)+J)

CONTINUE

RETURN
END

factorization task
SUBROUTINE ELCOLO
INTEGER K,I,J,S
Shared INTEGER /label21 NP
Shared INTEGER /label31 NUMDONE
Shared INTEGER /label4/ Beta,BetaP,N
Shared INTEGER /label51 PIVCOL
Shared CHARACTER /labell 1/ NUMLCK
INTEGER ICFret
INTEGER MYPIV, MYPIV2
INTEGER tempmin
REAL A(30000)
common /pblkl/ A(30000)
INTEGER ASSIGN(500)
common /pblk2/ ASSIGN(5OO)
INTEGER NUMCOLS
common /pblk3/ NUMCOLS
Shared REAL /labell2/ CurL(2000)

19

150
151 C
152 MYPIV = 1
153 D O 1 0 0 K = l , N

Start the choleski factorization loop

154
155 C
156
157
158
159
160 &
161 110
162
163
164
165 115
166
167
168
169
170
171
172 C
173
174
175
176
177

tempmin = min(K+Beta,N)
If I own column K then compute the pivot col

IF (K.eq.ASSIGN(MYPIV)) THEN
A((MYPIV*BetaP)+l) = sqrt(A((MYPIV*BetaP)+l))
DO 110 S = K+1, tempmin

A((MYPIV*BeW)+S-K+1) = A((MYPIV*BetaP)+S-K+l)
/ A((MYPIV*BetaP)+l)

CONTINUE
WHEN (NUMDONE.eq.NP) CONTINUE
DO 115 S = K, tempmin

CurL(S-K+1) = A((MYPIV*BetaP)+S-K+1)
CONTINUE

MYPIV = MYPIV + 1
NUMDONE=O
PIVCOL = PIVCOL + 1

WHEN (PIVC0L.eq.K) CONTINUE
ELSE

ENDIF
Update the rest of the columns

DO 120 MYPIV2= 1,NUMCOLS
J = ASSIGN(MYPIV2)
IF ((J.ge.K+l).and.(J.le.tempmin)) THEN

Do 130 I = J. temDmin
A((MYPIV2*B&P)+I-J+1) = A((MYPIV2*BetaP)+I-J+1)

178 C - CwL(I-K+ l)*CWL(J-K+l)
179 130 CONTINUE
180 ENDIF
181 120 CONTINUE
182 CALL CFlock(ICFret,l ,"UMLCK')
183 NuMDONE=NUMDONE+l
184 CALL CFulck(ICFret.1 ."UMLCK')
185100 CONTINUE
186 RETURN
187 END
188
189 C
190 SUBROUTINE FORWO
191 INTEGER IJ
192 REAL A(30000)
193 common /pblkl/ A(30000)
194 INTEGER ASSIGN(500)
195 common /pblk2/ ASSIGN(500)
196 INTEGER NUMCOLS
197 common /pblk3/ NUMCOLS
198 Shared INTEGER /label2/ NP
199 Shared INTEGER /label3/ NUMDONE
200 Shared INTEGER /label4/ Beta,BetaP,N
201 Shared INTEGER /labe15/ PIVCOL
202 Shared REAL /label7/ RHS(2000)
203 Shared REAL /label8/ Y(2000)
204

the foward solve task using inner-product

Shared CHARACTER /labell 1/ NUMLCK

20

205
206
207
208
209
210
21 1
212 c
213
214
215
216
217
218
219 110
220 c
221
222
223
224
225 C
226
227
228
229
230
23 1
232
233
234
235 100
236
237
238
239 C
240
241
242
243
244
245
246
247
248
249
250
25 1
252
253
254
255
256
257
258
259 C

INTEGER ICFret
INTEGER MYPIV, MYPIV2
INTEGER tempmax

MYPIV = 1
DOlOOI=l ,N

tempmax = max(1-Beta,l)
Compute the amount to subtract from the RHS

PriSUM = 0
DO 110 MYPIV2 = 1, NUMCOLS

J = ASSIGN(MYPIV2)
IF ((J.ge.tempmax).and.(J.lt.I)) THEN

END IF
PriSUM = PriSUM + A((BetaP*MYPIV2)+I-J+l)*Y(J)

CONTINUE
Update the RHS

CALL CFlock(ICFret,l ,"UMLCK')
RHS(1) = RHS(1) - PriSUM
NUMDONE = NuMDoNE+ 1
CALL CFulck(ICFIet,l ,"UMLCK')
If I own column I then compute Y(I)

IF (I.eq.ASSIGN(MYPIV)) THEN
WHEN (NUMDONE.eq.NP) CONTINUE
Y(1) = RHS(1) / A((BetaP*MYPIV)+l)
MYPIV = MYPIV + 1
NUMDONE = 0
PIVCOL = PIVCOL + 1

WHEN (PIVCOL.eq.1) CONTINUE
ELSE

END IF

RETURN
END

CONTLNUE

the bacward solve task using col-sweep
SUBROUTINE BACK()
INTEGER IJ
REAL A(30000)
common /pblkl/ A(30000)
INTEGER ASSIGN(5OO)
common /pblk2/ ASSIGN(5OO)
INTEGER NUMCOLS
common /pblk3/ NUMCOLS
Shared INTEGER /label2/ NP
Shared INTEGER /label4/ Beta,BeW,N
Shared INTEGER /labe15/ PIVCOL
Shared REAL /label8/ Y(2000)
Shared REAL /label9/ X(2000)
Shared CHARACTER /label 11/ NUMLCK
INTEGER MYPIV, MYPIV2
INTEGER tempmax

MYPIV = NUMCOLS
DO 100 J = N, 1, -1

If this proc owns column J then compute X(J)

21

260 IF (J.eq.ASSIGN(MYPIV)) THEN
26 1
262
263
264
265 END IF
266 WHEN (PIVC0L.leJ) CONTINUE
267 tempmax = max(J-Beta,l)

269 I = ASSIGN(MYPIV2)
270 IF ((I.leJ-l).and.(I.ge.tempmax)) THEN
27 1
272 ENDIF
273 110 CONTINUE
274100 CONTINUE
275 RETURN
276 END

X(J) = Y(J) / A((BetaP*MYPIV)+l)
MYF’IV = MYPIV - 1
IF (MYPIV.eq.0) MYPIV = 1
PIVCOL = PIVCOL - 1

268 DO 110 MYPIV2 = NUMCOLS, 1, -1

Y o = Y(1) - A((BetaF‘*MYPIV2)+J-I+1)*X(J)

Appendix 4: Concurrent FORTRAN - shared memory version

1
2
3 c
4 c
5
6 C
7
8
9 c
10
11
12 c
13
14 C
15
16 C
17
18 C
19
20
21
22
23
24
25
26
27
28 C
29
30
31 C
32
33
34

PROGRAM MAIN
Shared INTEGER /label 1/ PRCNUM(20)
PRCNUM holds the physical proc number corresponding the
the logical proc number

Shared INTEGER /labclY NP
NP is the number of processors

Shared INTEGER /label3/ NUMDONE
Shared INTEGER /label4/ Beta,BetaP,N
Beta is the semi-bandwidth, BetaP is Beta+l, N is the mamx size
Shared INTEGER /label5/ PIVCOL
Shared REAL /label6/ A(30000)
A contains the matrix

Shared REAL /label7/ RHS(2000)
RHS is the right-hand side vector

Shared REAL /label8/ Y(2000)
The Y vector in the forward solve

Shared REAL /label9/ X(2OOO)
X is the solution vector

Shared CHARACTER /labell 1/ NUMLCK
EXTERNAL ELCOL
EXTERNAL FORW
EXTERNAL BACK
INTEGER PID(20)
INTEGER I
INTEGER ICFret
INTEGER tempmax, tempmin

Allocate a lock
CALL CFgetl(ICFret,”UMLCK’)
open(unit=2,cpu= 1 ,file=’/usr/u l/mtj/concur/choleski/param.dat’)
Read in the number of processors

READ(2,525) NP
PRINT *, ’ Using ’W,’ processors’
DO 15 I = 1, NP

22

35
36 15 CONTINUE
37
38 C
39 READ(2,525) I
40 IF (I.eq.0) THEN
41 CALL INITMAT(A,RI-IS ,N,Beta,BetaP)
42 ELSE
43 CALL CRMAT(A,RHS,N.Beta,BetaP)
44 END IF
45 WRITE(6,600) N, Beta
46 600
47 525 FORMAT(I4)
48
49 PIVCOL = 0
50 C
51 NUMDONE = NP
52 COBLOCK
53
54 PROCESS (PID(i) BLCOLO ,PRCNUM(I))
55 150 CONTINUE
56 END COBLOCK
57
58
59 PIVCOL = 0
60 C
61 NuMDoNE=NP
62 COBLOCK
63 DO1601=1,NP
64
65 160 CONTINUE
66 END COBLOCK
67
68
69
70 C
71 NuMDoNE=NP
72 COBLOCK
73
74
75 170 CONTINUE
76 END COBLOCK
77
78 C Print out the solution vector
79 D O 5 0 0 J = l , N
80 WRITE(8,680) J, X(J)
81 500 CONTINUE
82 680
83
84 CALL CFlcill(ICFret,O)
85 END
86
87 C The factorization task
88 SUBROUTINE ELCOLO
89 INTEGER MYNUM

PRCNUM(1) = I + 2

Decide whether to read in or build the matrix

FORMAT(’ Order’J4,’ matrix with a semi-bandwidth’.I4,’.’)

Start the factorization processes on each processor

DO 150 I = 1, NP

Start the forward solve processes on each processor

PROCESS (PID(i) FORW 0 ,PRCNUM(I))

PIVCOL = N + 1
Start the back solve processes on each processor

DO 170 I = 1. NF’
PROCESS (PID(i) ,B ACKQ ,PRCNLM(I))

FORMAT(’ X(’J4,’) = ’,6E13.6)

23

90
91
92
93
94
95
96
97
98
99
100
101
102 c
103 C
104
105
106
107
108 C
109
110
111
112
113
114 110
115
116
117
118
119
120
121 c
122
123
1 24
125 C
126 130
127 120
128
129
130
131 100
132
133
134
135 C
136
137
138
139
140
141
142
143
144

INTEGER K,IJ
Shared INTEGER /label2/ NP
Shared INTEGER /label3/ -ONE
Shared INTEGER /label4/ Beta,BetaP,N
Shared INTEGER /label5/ PIVCOL
Shared REAL /label6/ A(20000)
Shared CHARACTER /labell 1/ NUMLCK
INTEGER ICFret
INTEGER MYF'IV
INTEGER plself
INTEGER tempmin

Start the choleski factorization loop
Find out what processor I am

MYNUM = plSelf0
MYPIV = MYNUM
DO100K=l .N

tempmin = min(K+Beta,N)
If I own the pivot column then compute it

IF (K.eq.MYFW) THEN
WHEN (NUMDONE.eq.NP) CONTINUE
A((K*BetaP)+l) = sqrt(A((K*BetaP)+ 1))
DO 110 S = K+1, tempmin

A((K*BetaP)+S-K+1) = A((K*BetaP)+S-K+1) / A((K*BetaP)+l)
CONTINUE

MYPIV = MYPIV + NF'
" E = O
PIVCOL = PIVCOL + 1

WHEN (P1VCOL.eq.K) CONTINUE
ELSE

ENDIF
Update the rest of the columns

DO 120 J = K+MYNUM, tempmin, NP
Do 130 I = J, tempmin

A((J*BetaP)+I-J+1) = A((J*BetaP)+I-J+1)
- A((K*BetaP)+I-K+l)*A((K*BetaP)+J-K+ 1)

CONTINUE
CONTINUE

CALL CFlock(ICFret,l ,"LJMLCK')
NuMDoNE=NuMDoNE+ 1
CALL CFulck(ICFret,l ,"UMLCK')

CONTINUE
RETURN
E N D

The forward solve task (using col-sweep)
SUBROUTINE FORWO
NTEGER MYNUM
NTEGER IJ
Shared INTEGER /label2/ NP
Shared INTEGER /label3/ NUMDONE
Shared INTEGER /label4/ Beta,BetaP,N
Shared INTEGER /label5/ PIVCOL
Shared REAL /label6/ A(20000)
Shared REAL /label7/ RHS(2OOO)

24

145
146
147
148
149
150
151

153
154
155
156
157 C
158
159
160
161
162
163

I 164 I 165
I 166

167
168
169 310
170
171
172
173 100
174
175
176
177 C
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194 C
195
196
197
198
199 C

I

1 I 152C

I

Shared REAL /label8/ Y(2OOO)
Shared CHARACTER /label 11/ NUMLCK
INTEGER ICFret
INTEGER MYPIV
INTEGER plself
INTEGER tempmin

Find out which processor I am
MYNUM = plselfo
MYPIV = MYNUM
DO 100 J = 1, N

tempmin = min(J+Beta,N)
If I am responsible for col J then compute Y(J)

IF (J.eq.MYPIV) THEN
WHEN (NUMD0NE.eq.NP) CONTINUE
Y(J) = RHS(J) / A((BetaP*J)+l)
MYPIV = MYPIV + NP
NUMDONE=O
PIVCOL = PIVCOL + 1

ELSE
WHEN (PIVC0L.eq.J) CONTINUE

ENDIF
DO 310 I = J+MYNUM, tempmin, NP

RHS(1) = RHS(1) - A((BetaP*J)+I-J+l)*Y(J)
CONTINUE

CALL CFlock(ICFret,l ,”UMLCK’)
NUMDONE = NUMDONE + 1
CALL CFulck(ICFret,l,’NUMLCK’)

CONTINUE
RETURN
END

The back solve task using col-sweep
SUBROUTINE BACK()
INTEGER MYNUM
INTEGER IJ
Shared INTEGER /laben/ NP
Shared INTEGER /label3/ NUMDONE
Shared INTEGER /label4/ Beta,BetaP,N
Shared INTEGER /label5/ PIVCOL
Shared REAL /label6/ A(20000)
Shared REAL /label8/ Y(2000)
Shared REAL /label9/ X(2000)
Shared CHARACTER /labell I/ NUMLCK
INTEGER ICFret
INTEGER MYPIV
INTEGER plself
INTEGER tempmax

find out which processor I am
MYNUM = plself()
MYPIV = N + 1 - MYNUM
DO 100 J = N, 1, -1

tempmax = max(J-Beta,l)
If I am responsible for col J then compute X(J)

25

200 IF (J.eq.MYPIV) THEN
20 1 WHEN (" E . e q . N P) CONTINUE
202
203
204 " E = O
205
206 ELSE
207 WHEN (PIVC0L.eq.J) CONTINUE
208 ENDIF
209
210
211 410 CONTINUE
212 CALL CFlock(ICFret.1 ,'NUMLCK')
213 NuMDoNE="E+ 1
214 CALL CFulck(ICFret,l ,"UMLCK')
215100 CONTINUE
216 R E m
217 END

X(J) = Y(J) / A((BetaP*J)+l)
MYPIV = MYPIV - NP

PIVCOL = PIVCOL - 1

DO 410 I = J-MYNUM, tempmax, -NP
Y(I) = Y(1) - A((BetaP*I)+J-I+l)*X(J)

Appendix 5: PISCES message passing version

1 tasktype chol
2
3 C
4 C
5 C BetaPisBeta+ 1
6 integer MaxN, MaxBetaP
7 C
8 parameter (MaxN=305)
9 parameter (MaxBetaP=80)
10 parameter (P=25)
11 * M should be at least as great as N/P

integer N, M, P, Beta, BetaP
N is the matrix size, M is the rnax number of columns per proc
P is the max number or processors, Beta is the semi-bandwidth,

MaxN is the max matrix size, MaxBetaP is the max semi-bandwidth

12
13
14 C
15
16 C
17
18 c
19
20
21
22
23
24
25
26
27
28 C
29
30
31 C
32
33

parameter (M=305)-
integer colasgn(P,M)
colasgn is the array of which columns a processor owns

integer numcols(P)
numcols is the number of columns owned by each processor

taskid tasknum(P)
the array of task id's

common /tblk/tasknum(P)
handler getid
real WMaXN)
handler mnewx
integer xok
common /bblkl/xok
real Curx
common /bbWCurx
real A(MaxN,MaxBetaP)
A is the matrix

common /result/A(MaxN,MaxBetaP)
real B(MaxN)
B is the right hand side

common /rhs/B(MaxN)
integer owner(MaxN)

26

34 C
35 signal fordon
36 integer numclust
37 integer clust
38 handler newcol
39 enddeclarations
40 *
41 * Generate test matrices
42 *
43 CALL SETCPU(1)
44 open(unit=2,file='/usr/ul/mtj/pisces/mchol3/param.dat')
45 READ(2,500) N
46
47 READ(2,500) Beta
48
49 500 FORMAT(I4)
50
51
52 A(i,l) = Beta * 4.0
53 do 20j = 2,Beta+l
54 A(ij) = -1.0
55 20 continue
56 10 continue
57 *
58 * Make the assignment of columns to tasks
59 *
60 clust=pppcminO
61 numclust = 0
62
63 numcols(c1ust) = 0
64 clust = pppcnxt(c1ust)
65
66 if (clust.eq.pppcmin()) goto 55
67 50 continue
68 55 continue
69 myclust = pppgclu (pppself)
70 clust = pppcmino
71 do6Oi=l ,N
72 *
73
74
75 colasgn(clust,numcols(clust)) = i
76 owner(i) = clust
77 clust = pppcnxt(c1ust)
78 60 continue
79 *
80 * Make the assignment of tasks to clusters
81 *
82 clust=pppcminO
83
84
85
86 &
87 &
88 &

the array of who owns each column

print *, ' N = ',N

print *, ' Beta = ',Beta

BetaP = Beta + 1
do 10 i = 1,N

do 50 i = 1, 1OOOOO

numclust = numclust + 1

Skip the cluster on which this task is running
if (myclust .q. clust) clust = pppcnxt (clust)
numcols(c1ust) = numcols(c1ust) + 1

do 70 i = 1, 1OOOOO
if (myclust .eq. dust) clust = pppcnxt (clust)
on cluster(c1ust) initiate colsrv (N,Beta,numclust,

pppvl (numcols, clust, clust),
pppml (colasgn, P, M, clust, clust, 1, M),
pppvl (owner, 1 N)

27

89 clust = pppcnxt(c1ust)
90 if (clustq.pppcmin0) goto 75
91 70 continue
92 75 continue
93 *
94 * Get the taskid of every task
95 *
96 accept numclust-1 of
97 getid
98 endaccept
99 *
100 to all send allids(pppvl(tasknum,l,P))
101 *
102 * Send the columns that are assigned to each processor to that processor
103 *
104 clust=pppcminO
105
106
107
108 to tasknum(c1ust) send incol
109 & (i,BetaP,pppm l(A,MaxN,MaxBetaP,colasgn(clustj),
110 & colasgn(clustj),l ,BetaP))
111 90 continue
112 clust = pppcnxt(c1ust)
113 if (clust.eq.pppcmin0) goto 85
114 80 continue
115 85 continue
116 *
117 * Wait for results to come back
118 *
119 accept N of
120 newcol
121 endaccept
122 *
123 * Initialize the RHS to all 1’s
124 *
125 do 120 i=l,N
126 B(i) = 1.0
127 120 continue
128 *
129 * Start the forward solve
130 *
131 do 130 i=l,N
132 to tasknum(owner(i)) send bval(B(i))
133 130 continue
134 accept numclust-1 of
135 fordon
136 endaccept
137 *
138 * Start back solve
139 *
140 accept n of
141 mnewx
142 endaccept
143 *

Send the collection of taskid’s to every task

do 80 i = 1, 1OOOOO
if (myclust .eq. clust) clust = pppcnxt (clust)
do 90 j = 1, numcols(c1ust)

28

144 * print the solution vector
145 *
146 do 450 i=l,N
147 WRITE (8,650) i,X(i)
148 450 continue
149 650
150 terminate
151 end
152 *
153 * HANDLER: Store the taskid in the array
154 *
155 handler getid (index, tasknum(index))
156 integer index
157 integer P
158 parameter (P=25)
159 taskid tasknum(P)
160 common /tblk/tasknum(P)
161 enddeclarations
162 return
163 end
164 *
165 * HANDLER: Store the incoming column in the array
166 *
167 handler newcol (col, BetaP,
168 &
169 integer MaxN, MaxBetaP, BetaP
170 parameter (MaxN=305)
171 parameter (MaxBetaP=80)
172 real A(MaxN,MaxBetaF')
173 common /result/A(MaxN,MaxBetaF')
174 integer col
175 enddeclarations
176 return
177 end
178 *
179 * factorization, back solve and forward solve task
180 *
181
182 &
183 *
184 integer M, BetaP
185 integer MaxBeraF'
186 parameter (M=305)
187 parameter (MaxBetaP=80)
188 integer P
189 parameter (P=25)
190 integer MaxN
191 parameter (MaxN=305)
192 integer owner(MaxN)
193 integer numclust
194 integer N, Beta, numcols
195 common /mblkl/ numcols
196 integer mycols(M)
197 common /mblk2/ mycols(M)
198 handler incol

FORMAT(' X(',14,') = ',E13.6)

pppm 1 (A,MaxN,MaxBetaF',col,col,l ,Bern))

tasktype colsrv (N, Beta, numclust, numcols,

These parameter must match that in the chol tasktype definition
pppvl (mycols, 1, M), pppvI(owner, 1. N)

29

199
200
201 c
202
203
204
205
206
207
208
209
210
211 c
212
213
214
215
216
217
218
219
220
22 1
222
223
224 C
225
226
221 c
228
229
230
23 1
232
233
234
235
236 *
237 *
238 *
239
240 *
24 1
242
243
244 *
245
246
247
248 *
249 *
250 *
25 1
252
253 *

handler pivot
real Amine(M,MaxBetaF')
Amine contains the columns that this processor owns

common /blk l/Amine(M,MaxBetaP)
real piv(h4axBetaP)
common /blk2/piv(MaxBetaP)
integer pivnum
common /blk3/pivnum
integer curk
integer curin
common /blk5/curin
real Yminc(M)
Ymine contains the Y values that this processor owns

common /blk4/Ymine(M)
real sum
integer sent
integer k,s,i
handler bval
handler bup
handler newx
integer xok
common /bblkl/xok
real Curx
common /bblkWCurx
real B(M)
B contains the right hand side values this processor owns

common /fblkl/ B(M)
integer bcount(M)
bcount contains the number of updates to B(i) received

common /fblkW bcount(M)
taskid tasknum(P)
common /tblk/tasknum(P)
handler allids
enddeclarations

BetaP = Beta + 1
myclust = pppgclu (pppself)

Send my taskid to the parent

to parent send getid(myclust,pppself)
Accept the vector of taskids
accept 1 of

allids
endaccept
receive the columns that we are assigned
accept numcols of

incol
endaccept

Begin the factorization

myk=l
do 10 k=l,N

if I own column k then compute and broadcast the pivot

30

~

254
255
256
257
258 20
259
260 &
26 1
262 &
263
264
265 30
266
267
268 40
269
270
271 *
272 *
273
274
275 &
276
277
278
279 *
280
28 1
282 &
283
284
285 &
286 60
287
288 50
289 10
290 *

if (mycols(myk).eq.k) THEN
Amine(m yk, l)=sqrt(Amine(m yk,l))
do 20 s=2,(min(k+Beta,N)-k+l)

continue
to all send pivot(mycols(myk), BetaP,

to parent send newcol(mycols(myk), BetaP,

do 30 s=l,BetaP

continue
myk = myk + 1

accept 1 of
pivot

endaccept
if a pivot column is received out of order then
send it back to myself and get another
if @ivnum.ne.k) THEN

to self send pivot(pivnum, BetaP,

goto 40

Amine(myk,s)=Amine(myk,s)/Amine(m yk, 1)

pppm 1 (Amine,M,MaxBetaP,myk,m yk, 1 ,BetaF'))

pppm l(Amine,M,MaxBetaP,myk,m yk, 1 ,BetaF'))
'

piv(s)=Amine(m yk,s)

ELSE

pppvI@iv,l,Be@))

ENDIF
ENDIF
update the rest of the columns that I own
do 50 s = myk,numcols

if ((mycols(s).gt.k).and.(mycols(s).le.min(k+Beta,N)))
THEN
do 60 i=l ,min(Beta+k,N)-mycols(s)+l

Amine(s,i)=Amine(s,i)-piv(i+m ycols(s)-k)*
piv(mycols(s)-k+ 1)

continue
ENDIF

continue
continue

291 * start forward solve (using inner product)
292 *
293
294 *
295
296
297
298
299
300 90
301
302
303
304
305
306
307 &
308

cUrin=l
receive the right hand side 'values that I own
accept numcols of

bval
endaccept
do 90 i = 1, numcols

continue
curin=l
do 1OOi= l,N

bcount(i) = 0

sum = 0
sent = 0
do 110 s = 1, numcols

if ((mycols(s).ge.max(1,i-Beta)).and.(mycols(s).lt.i))

sum = sum + Amine(s,i-mycols(s)+l) * Ymine(s)
THEN

3 3.

309
310 *
311 *
3 12
313
314 150
315
3 16
317
318
319 160
320
32 1
322
323 110
324
325
326
327 100
328
329 *

ELSE if (mycols(s).eq.i) THEN
if I own this column then wait for everyone
to send me the updates and then compute Y(1)
b(s) = b(s) - sum
sent = 1

accept all of

endaccept
goto 150
continue

Ymine(curin) = B(curin) / Amine(curin,l)
curin = curin + 1

if (bcount(s).eq.numclust-2) goto 160

bUP

ENDIF
continue

if (sent.eq.0) then

endif
continue

to tasknum(owner(i)) send bup(i,sum)

to parent send fordon

330 * start backsolve (using col-sweep)
331 *
332
333
334
335
336
337
338
339
340
34 1
342 210
343
344
345
346
34 7
348
349 &
350
35 1
352 220
353 200
354 300
355
356
357 *
358 *
359 *
360
361 &
362

curk=numcols
do 200 j=N,l,-1

if (curk.eq.0) goto 300
if (mycols(curk).eq.j) THEN

Curx=Ymine(curk)/Amine(curk, 1)
to all send newx(j,Curx)
to parent send mnewx(j,Curx)
CWk = Curk - 1

ELSE
xok = j

newx
endaccept
if (xok.ne.0) goto 210

accept 1 of

ENDIF
do 220 s = cuk, 1, -1

if ((mycols(s).lt.j).and.(mycols(s).ge.max(lj-Beta)))
THEN

Ymine(s) = Ymine(s) - Amine(sj-mycols(s)+l)*Curx
ENDIF

continue
continue
continue

terminate
end

HANDLER receive a column and place it in Amine

handler incol(co1, BetaP,

integer M, BetaP
mameter (M=305)

pppm 1 (Amine,M,MaxBetaP,col,col, 1 ,Betap))

363

32

~~

364
365
366
367
368
369
370
37 1
372 *
373 *
374 *
375
376
377
378
379
380
38 1
382
383
384
385
386 *

integer MaxBetaP
parameter (MaxBetaP=80)
mal Amine(M.MaxBetaP)
common /blkl/Amine(M,MaxBetaP)
integer col
enddeclarations
return
end

HANDLER receive a pivot column and place it in piv

handler pivot(pivnum. BetaP, pppvl(piv,l ,Be@))
integer BetaP
integer MaxBetaP
parameter (MaxBetaP=80)
real piv(MaxBetaP)
common /blk2/piv(MaxBetaF')
integer pivnum
common /blk3/pivnum
enddeclarations
return
end

387 * HANDLER take in the updated bval
388 *
389 handler bval (B(curin))
390 integer M
39 1 parameter (M=305)
392 real B(M)
393 common /fblkl/ B(M)
394 integer curin
395 common /blk5/curin
396 enddeclarations
397
398 return
399 end
400 *
401 * HANDLER: take in the new x and place in x(r0w) for main task
402 *
403 handler mnewx (row,X(row))
404 integer row
405 parameter (MaxN460)
406 real X(MaxN)
407 common /xblk/X(MaxN)
408 enddeclarations
409 return
4 10 end
411 *
412 * HANDLER: take in the new x
413 *
4 14 handler newx (row,Curx)
415 integer row
416 integer xok
417 common /bblkl/xok
418 real Curx

curin = curin + 1

33

419 common /bbWCurx
420 enddeclarations
421
422 if (row.eq.xok) THEN
423 xok = 0
424 ELSE
425 to self send newx(row,Curx)
426 ENDIF
427 return
428 end
429 *
430 * HANDLER: Update the rhs
431 *
432
433
434
435
436
437
438
439
440
44 1
442
443
444
445
446
447
448
449
450 10
451 15
452
453
454
455
456 *

handler bup (row, bval)
integer MaxN,M
parameter (M=305)
parameter (MaxN=305)
integer row
real bval
real B(M)
common /fblkl/ B O
integer bcoun t0
common /fbW bcount(M)
integer numcols
common /mblkl/ numcols
integer mycols(M)
common /mblk2/ mycols(M)
enddeclarations

do 10 i= 1, numcols

continue
continue

B(i) = B(i) - bval
bcount(i) = bcount(i) + 1
return
end

if (row.eq.mycols(i)) got0 15

457 * HANDLER: accepts vector of taskids
458 *
459 handler allids (pppvl(tasknum.1 ,P))
460 integer P
461 parameter (P=25)
462 taskid tasknum(P)
463 common /tblk/tasknum(P)
464 enddeclarations
465 return
466 end

Appendix 6: PISCES FORCE version

1 tasktype chol
2 INTEGER IJ,K,S
3 INTEGER tempmin

34

4
5
6
7 c
8
9 c
10
11 c
12
13 C
14
15 C
16
17
18
19
20
21
22
23
24 C
25
26
27
28
29
30
31
32
33

INTEGER tempmax
shared

INTEGER Beta,BetaP,N
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size

REAL A(20000)
A contains the matrix
REAL RHS(1000)
RHS is the right-hand side vector

The Y vector in the forward solve

X is the solution vector
INTEGER STARTTIME,ENDTIME
common /blk l/Beta ,BetaP,N,A
common /bLk2/RHS ,Y ,X,STARlTIME,ENDTIME

REAL Y(1Ooo)

REAL X(l000)

end shared
end declarations

forcesplit
banier

Decide whether to read in or build the matrix
CALL SETCPU(1)
open(unit=9,file=’/usr/u I/mtj/pisces/fchol/param.dat’)
READ(9,525) I
IF (I.eq.0) THEN

ELSE

END IF
WRITE(6,600) N, Beta

CALL INITMAT(A,RHS,N,Beta,BetaP)

CALL CRMAT(A,RHS,N,Beta,BetaP)

34 600
35 525 FORMAT(I4)
36 end barrier
37
38 C
39 DO 100 K = l , N

FORMAT(’ Order’J4,’ matrix with a semi-bandwidth’,I4,’.’)

Start the choleski factorization loop

40 C
41
42
43
44
45 c
46
47
48 110
49
50
51 C
52
53
54
55 c
56 130
57 120
58 100

Compute the first element of the pivot column
barrier

end barrier
tempmin = min(K+Beta,N)
Compute the rest of the pivot column

presched do 110 S = K+ 1, tempmin

A((K*BeW)+ 1) = sqrt(A((K*BetaP)+ 1))

A((K*BetaP)+S-K+1) = A((K*BetaP)+S-K+1) / A((K*BetaP)+ 1)
CONTINUE

banier
end barrier
Update the rest of the columns

presched do 120 J = K+ 1, tempmin
Do 130 I = J, tempmin

A((J*BetaP)+I-J+ 1) = A((J*BetaP)+I-J+1)
- A((K*BetaP)+I-K+l)*A((K*Betal?)+J-K+1)

CONTINUE
CONTINUE

CONTINUE

35

59

61
~ 60 C The foward solve (using col-sweep)

DO 300 J = 1, N
62 barrier
63
64 end barrier
65 tempmin = min(J+Beta,N)
66
67
68 310 CONTINUE
69 300 CONTINUE
70
71 C The backward solve (using col-sweep)

73 barrier
74
75 end barrier
76 tempmax = max(J-Beta,l)
77
78
79 410 CONTINUE
80 400 CONTINUE
81
82 C Print out the solution vector
83 barrier
84 D O 5 0 0 J = I , N
85 WRITE(8,680) J, X(J)
86 500 CONTINUE
87 680
88 end barrier
89
90 terminate
91 end

Y(J) = RHS(J) / A((BetaP*J)+l)

presched do 310 I = J+1, tempmin
RHS(1) = RHS(1) - A((BeW*J)+I-J+l)*Y(J)

72 DO 400 J = N, 1, -1

X(J) = Y(J) / A((BetaP*J)+l)

presched do 410 I = J-1, tempmax, -1
Y(1) = Y(1) - A((BetaP*I)+J-I+l)*X(J)

FORMAT(’ X(’J4,’) = ’,6E13.6)

,

36

Appendix 7

Language PE's Fact Forw Back

37

201.80 6.00
105.00
56.62 1.66
33.38 1.06

16 21.04 0.94

7.38
3.76
2.00
1.22
1.04

239.94 3.04
121.82 1.62
62.22 0.94
32.56 0.68

16 18.46 0.92

3.14
1.68
0.98
0.72
0.94 I.

180.52 8.46
96.22

10.36
17.62 41.44

16 44.28 30.88

I

1

7.28
5.86
7.56
14.14
28.08

217.70 5.76
116.76

49.26 17.48
1 68.04 ?:

16 5 1.20 30.96 I ji 1
5.98
6.10
7.50
17.50
30.98

287.22 14.38
161.04 12.74
97.78
67.30 5.36

1 7.80

16 55.14 4.18 11 j 1
9.44
7.34
5.10
4.70
5.20

225.50 3.04
114.24 1.68
58.72
30.80 0.86

16 17.56 0.98

3.08
1.70
1.16
0.86
0.98

Appendix 8

Chart of lines of code (all i/o and comments removed)
Lines Words Chars Program

92 305 2846 Force (Local)
48 170 1525 Force (Shared)
214 649 6460 Concurrent (Local)
161 501 4784 Concurrent (Shared)
344 859 9706 Pisces (Message-passing)
53 157 1572 Pisces (Force) A

38

Appendix 9

t.
0
c

I

39

Report Documentation Page

1. Report No
NASA CR-181779
ICASE Repor t N o . 89-6

2. Government Accession No.

A LANGUAGE COMPARISON FOR SCIENTIFIC
COMPUTING ON M I M D ARCHITECTURES

s pawl 21. No. of pages

7. Authoris)

22. Price

Mark T. Jones
Merrell L. P a t r i c k
Rober t G. Voig t

9. Performing Organization Name and Address

19. Security Classif. (of this report)

I n s t i t u t e f o r Computer A p p l i c a t i o n s i n Sc ience

20. Security Classif. (of 1

and Eng inee r ing
Mail S top 132C, NASA Langley Research Cen te r

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n
Langley Research Cen te r
Hampton, VA 23665-5225

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

Janua ry 1989

6. Performing Organization Code

8. Performing Organization Repon No.

89-6

10. Work Unit No.

505-90-21-01
11. Contract or Grant No.

NASl-18107

C o n t r a c t o r Rep o r t
14. Sponsoring Bgency Code

Langley Techn ica l Monitor :
R icha rd W. Barnwell

F i n a l Repor t

16. Abstract

Choleski ' s method f o r s o l v i n g banded symmetr ic , p o s i t i v e d e f i n i t e sys t ems i s
implemented on a m u l t i p r o c e s s o r computer u s i n g t h r e e FORTRAN based p a r a l l e l
programming l a n g u a g e s , t h e F o r c e , PISCES and Concur ren t FORTRAN. The c a p a b i l i t i e s
of t h e l anguage f o r e x p r e s s i n g p a r a l l e l i s m and t h e i r u s e r f r i e n d l i n e s s a r e
d i s c u s s e d , i n c l u d i n g r e a d a b i l i t y of t h e code, debugging a s s i s t a n c e o f f e r e d , and
e x p r e s s i v e n e s s of t h e l anguages . The performance of t h e d i f f e r e n t imp lemen ta t ions
i s compared. It i s a rgued t h a t PISCES, u s i n g t h e Force f o r medium-grained
p a r a l l e l i s m , i s t h e a p p r o p r a t e c h o i c e f o r programming Choleski ' s method on t h e
m u l t i p r o c e s s o r computer , Flex/32.

17. Key Words (Suggested by Authods))

p a r a b o l i c e q u a t i o n s , l i n e a r q u a d r a t i c
r e g u l a t o r problem, s t a b i l i z a b i l i t y

18. Distribution Statement
U n c l a s s i f i e d - Unl imi t ed

61 - Computer
Programming &
Sof tware

Uncl a s si f i ed I Unc 1 a s si f i e d I 40 1 A 0 3
I I I

NASA FORM 1626 OCT E6

NASA-Langley, 1989

